111 research outputs found

    Air pollution modelling using a graphics processing unit with CUDA

    Get PDF
    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.Comment: 5 figure

    Thermomechanische Resistenz und chemische Beständigkeit spektral selektiver Mehrschichtsysteme für die Architekturverglasung

    Get PDF
    Die vorliegende Arbeit verfolgt das Ziel der Entwicklung neuer, hochresistenter Sonnen- und Wärmeschutzschichten für Architekturglas zur optimalen Kontrolle des Gesamtenergiedurch-lassgrades (g-Wert) bei Gebäudeverglasung. Das Ziel hoher Resistenz bezieht sich dabei auf den Erhalt der Schichteigenschaften bei Wärmebehandlung (Temperung, thermisches Vor-spannen), korrosivem Angriff (Glas- und Schichtkorrosion) und mechanischer Belastung (Handling und Reinigung). Mittels systematischer Analyse einer Reihe von Defekten bei Sonnen- und Wärmeschutzschichten, die gezielt durch Wärmebehandlung, Korrosionstest und mechanische Belastung herbeigeführt werden, erfolgt die Verknüpfung zwischen Schädi-gungsursache und -wirkung. Auf Basis der resultierenden Ergebnisse und mit dem Verständnis der schädigenden Prozesse werden Modellbeschichtungen hergestellt, hinsichtlich ihrer Resistenz und Materialeigenschaften untersucht und eine Verbindung zwischen Stabilitätsmerkmalen wie Temperatur, Abrieb- und Feuchtebeständigkeit und materialspezifischen Eigenschaften wie Struktur, Eigenspannungen und Elastizität hergestellt. Im Ergebnis dienen die gewonnenen Erkenntnisse als methodische Grundlage und erster Entwicklungsansatz hin zu Beschichtungen höherer Resistenz

    Dust is forming along the red giant branch of 47 TUC

    Full text link
    We present additional evidence that dust is really forming along the red giant branch (RGB) of 47 Tuc at luminosities ranging from above the horizontal branch to the RGB-tip (Origlia et al. 2007). The presence of dust had been inferred from an infrared excess in the (K-8) color, with K measured from high spatial resolution ground based near-IR photometry and "8" referring to Spitzer-IRAC 8 micron photometry. We show how (K-8) is a far more sensitive diagnostic for detecting tiny circumstellar envelopes around warm giants than colors using only the Spitzer-IRAC bands, for example the (3.6-8) color used by Boyer et al. (2010). In addition, we also show high resolution HST-ACS I band images of the giant stars which have (K-8) color excess. These images clearly demonstrate that Boyer et al (2010) statement that our detections of color excess associated with stars below the RGB-tip arise from blends and artefacts is simply not valid.Comment: 12 pages, 4 figure

    Gamma-Ray Burst Spectral Correlations: Photospheric and Injection Effects

    Get PDF
    We present a physical framework that can account for most of the observed spectral properties of the prompt gamma-ray burst emission. This includes the variety of spectral shapes, shape evolutions, and spectral correlations between flux and spectral peak, within bursts described by Borgonovo & Ryde, and among bursts described by Amati/Ghirlanda. In our proposed model the spectral peak is given by the photospheric emission from a relativistic outflow for which the horizon length is much smaller than the radial width. The observed duration of the thermal flash will be given by the radial light-crossing time. This then gives that the typical emission site is at ~10e11 cm from the center, with a Lorentz factor of ~300. This emission is accompanied by non-thermal emission from dissipation locations outside the photosphere. The relative strength of these two components depend on injection effects at the central engine leading to varying relative location of the saturation and photospheric radii. The total emission can then reproduce the observed variety. The spectral correlations are found by assuming that the amount of energy dissipated depends non-linearly on the averaged particle density. Beside the spectral correlations this also gives a description of how the relative strength of the thermal component varies with temperature within a burst.Comment: ApJ accepted, acknowledgement adde

    VLBI and Archival VLA and WSRT Observations of the GRB 030329 Radio Afterglow

    Full text link
    We present VLBI and archival Karl G. Jansky Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) observations of the radio afterglow from the gamma-ray burst (GRB) of 2003 March 29 (GRB 030329) taken between 672 and 2032 days after the burst. The EVLA and WSRT data suggest a simple power law decay in the flux at 5 GHz, with no clear signature of any rebrightening from the counter jet. We report an unresolved source at day 2032 of size 1.18±0.131.18\pm0.13 mas, which we use in conjunction with the expansion rate of the burst to argue for the presence of a uniform, ISM-like circumburst medium. We develop a semi-analytic method to model gamma-ray burst afterglows, and apply it to the 5 GHz light curve to perform burst calorimetry. A limit of <0.067< 0.067 mas yr1^{-1} is placed on the proper motion, supporting the standard afterglow model for gamma-ray bursts.Comment: 24 pages, 5 figure

    An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts

    Full text link
    Recent observations by the FermiFermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ\gamma-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, EpE_{\rm p} and kTkT, of these two components are correlated via the relation EpTαE_{\rm p} \propto T^{\alpha} which varies from GRB to GRB. We present an interpretation in which the value of index α\alpha indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data

    Very Metal-poor Stars in the Outer Galactic Bulge Found by the Apogee Survey

    Get PDF
    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III (SDSS-III), is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2,403 giant stars in twelve fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity([Fe/H]1.7\le-1.7), including two that are very metal-poor [Fe/H]2.1\sim-2.1 by bulge standards. Luminosity-based distance estimates place the five stars within the outer bulge, where other 1,246 of the analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α\alpha-elements O, Mg, and Si without significant α\alpha-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly-identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.Comment: 6 pages, 3 figures, 2 table

    Crystallisation Kinetics of a β

    Get PDF
    LZSA (Li2O-ZrO2-SiO2-Al2O3) glass ceramic system has shown high potential to obtain LTCC laminate tapes at low sintering temperature (<1000°C) for several applications, such as screen-printed electronic components. Furthermore, LZSA glass ceramics offer interesting mechanical, chemical, and thermal properties, which make LZSA also a potential candidate for fabricating multilayered structures processed by Laminated Objects Manufacturing (LOM) technology. The crystallization kinetics of an LZSA glass ceramic with a composition of 16.9Li2O⋅5.0ZrO2⋅65.1SiO2⋅8.6Al2O3 was investigated using nonisothermal methods by differential thermal analysis and scanning electronic microscopy. Apparent activation energy for crystallization was found to be in the 274–292 kJ⋅mol−1 range, and an Avrami parameter n of 1 was obtained that is compared very favorably with SEM observations

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap

    Risk of diabetes and the impact on preexisting diabetes in patients with lymphoma treated with steroid-containing immunochemotherapy

    Get PDF
    First-line treatments for lymphomas often include high doses of prednisolone, but the risks of new-onset diabetes mellitus (DM) or worsening of preexisting DM following treatment with cyclic high dose corticosteroids is unknown. This cohort study matched non-Hodgkin lymphoma (NHL) patients treated with steroid-containing immunochemotherapy (ie, R-CHOP[-like] and R-CVP) between 2002 and 2015 to individuals from the Danish population to investigate the risks of new-onset DM. For patients with preexisting DM, the risks of insulin dependency and anthracycline-associated cardiovascular diseases (CVDs) were assessed. In total, 5672 NHL patients and 28 360 matched comparators were included. Time-varying incidence rate ratios (IRRs) showed increased risk of DM in the first year after treatment compared with matched comparators, with the highest IRR being 2.7. The absolute risks were higher among patients in the first 2 years, but the difference was clinically insignificant. NHL patients with preexisting DM had increased risks of insulin prescriptions with 0.5-, 5-, and 10-year cumulative risk differences of insulin treatment of 15.3, 11.8, and 6.0 percentage units as compared with the DM comparators. In a landmark analysis at 1 year, DM patients with lymphoma had decreased risks of insulin dependency compared with comparators. Time-varying IRRs showed a higher CVD risk for NHL patients with DM as compared with comparators in the first year after treatment. NHL patients treated with steroid-containing immunochemotherapy regimens have a clinically insignificant increased risk of DM in the first year following treatment, and patients with preexisting DM have a temporary increased risk of insulin prescriptions and CVD
    corecore